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PREFACE

This report is based on five lectures given by Dr. I. N. Sneddon at

North Carolina State in April, 1963. The research reported here concerns

certain crack problems in the mathematical theory of elasticity. A group

of these problems were presented to us by Dr. George Irwin of NRL at the

beginning of this sponsored research work; the present report concerns

the solution of some of these. Part of the research results presented in

this report have already been submitted in the form of three papers for

possible publication.

Copies of this report are being distributed as directed. This project

is sponsored by AFOSR, ARO, and ONR through the Joint Services Advisory

Group. The present activity is under a grant number AF-AFOSR-44h-63.

John W. Cell
Project Director
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THE o'FECT OF INTERNAL CRAMCKS THE DISTRIBUTICI CF STRESS IN

THIN ELASTIC STRIPS AND CYLINDE1S

1. Introduction.

The present report is based on a series of five lectures given

in the Mathematics Department of North Carolina State College in

April 1963, in which there was presented a connected account of some

recent researches in the classical (infinitesimal) theory of

elasticity. In particular the work done by the author and three

collaborators R. P. Srivastav, R. J. Tait and J. L. Welch in the

University of Glasgow during the preceding year is discussed in some

detail.

In 82 there is a discussion of the two-dimensional problem of

determining distribution of stress in a very long strip of uniform

width 2 c which has a Griffith crack of length 2 a situated symmetrically

in its interior. The stress field is supposed to be set up by the

application of a known pressure to the inner surfaces of the crack.

The equations of plane strain are used throughout (but the plane stress

case can be derived by a trivial change in the values of the elastic

constants). Two different kinds of boundary value problem are

considered.

In Problem (a) (treated in 92.1) we assume that the surfaces of
the strip are constrained in such a way that the normal component of the

surface displacement and the surface shearing stress both vanish; this

problem is exactly that of determining the distribution of stress in an

infinite two-dimensional elastic medium containing an infinite row of

identical Griffith cracks equally spaced. This boundary value problem is
solved by redicing it to the solution of a pair of dual series relations

which is in turn shown to be equivalent to that of an integral equation

which can be solved easily for an arbitrary distribution of internal

pressure. In 82.2 the solution in the case where the internal

pressure is constant is considered in more detail; the critical value of

the internal pressure is calculated using Griffith's criterion
[formulae (2.35) and (2.36) below] and the effect of the fact that the
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strip is of finite width is illustrated by calculating the variation

with a/c of the percentage change in the value of the critical

pressure from the value in the 'infinite' case c w a (Table I and

Fig. 2 below). The shape of the crack and the variation of the normal

component of stress across the line of the crack are also shown for some

non-zero values of the ratio a/c (Figs. 4 and 5 below).

In Problem (b) (considered in 92.2) it is assumed that the

surfaces of the strip are free from applied stress. Here the

analysis is more complicated; the problem is again reduced to that of

solving an integral equation - in this instance a Fredholm equation of

the second kind - but the equation does not appear to have an exact

(analytical) solution so that in any given case it would have to be

solved numerically.

The discussion in 03 is an immediate generalization to the case

of axial symmetry of the methods used in 12 so that the problem is now

that of determining the distribution of stress in a very long circular

cylinder which has an internal penny-shaped crack which has its centre

lying on the axis of the cylinder and its plane normal to that axis.

The stress field in the cylinder is due to the application of pressure

to the surfaces of the crack. Again two kinds of problem are

considered.

In Problem (a) (discussed in 03.1 and by an alternative method in
13.2) it is supposed that the shearing stress on the surface of the

cylinder and that the radial component of the surface displacement are

both identically zero. For an arbitrary (but axisymmetric) distribution

of pressure on the crack surface the determination of the various

quantities of physical interest is made to depend on the solution of a

Fredholm integral of the second kind. An iterative solution of this

equation with the free term corresponding to a constant internal

pressure and valid for small values of the ratio e/c is given in 93.3;
for values of a/c lying between I and 2 it is necessary to solve the

question numerically and numerical values of the unknown function

corresponding to a set of values of a/c are reported in the same

section. From this solution it is a simple matter to calculate the

variation with a/c of the critical pressure required to cause the

!I
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f crack to spread and that of the stress intensity factor introduced by

Irwin; these are shown in Figs. 9 and 10 respectively. The results

so obtained are compared (in Pigs. 11 and 12) with those obtained

in the analogous case in plane strain (02.1 above) and it is shown

that as far as an "engineering" approximation is concerned the

size effect in the axisymmetric case can be simply gauged from that in

the plane strain case.

Finally in Problem (b) (Ireated in 93.4) it is assumed that the

curved surface of the cylinder is free from applied stress.

Again the problem of determining the quantities of physical interest

corresponding to an arbitrary axisymmetric distribution of stress

on the crack surfaces is reduced to that of solving a Fredholm

integral equation of the second kind but now the actual

calculations are more complicated since the kernel of the integral

equation is a function of the Poisson's ratio of the material

7 of the cylinder. Again an iterative solution and numerical

solutions for a constant internal pressure (and for Poisson's

-ratio equal to 1) are given and the variation with a/c of the

critical pressure and the Irwin stress intensity factor

calculated (Of. Figs. 16, 17). These two diagrams also afford

a comparison between the solutions of Problems (a) and (h); if

a 4 1 c there is little difference between the size effects
in the two cases but if a j c the effect is more pronounced

in the case in which the radial component of the surface dis-

placement of the cylinder is zero.
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2. Distribution of Stress in a Strip of Finite Width containing a

Griffith cacok.

We begin by considering the distribution of stress in a very

f long strip of uniform width 2o which has a Griffith crack of length

2a in its interior. We shall assume that x

the crack is perpendicular to the edges of

I the strip and that its centre lies on the

central line of the strip (Of. Fig. I) and

that the state of stress in the strip is

due to the applioation of pressure of )

prescribed value to the surfaces of the - _______

crack. In addition we shall make the usual

assumptions of the classical (infinitesimal)

theory of elasticity and, in particular, we

shall solve the equations corresponding to

a state of plane strain in the strip. The

results in the case of plane stress can easily Ft. 1
be deduced by a trivial change in the values

of the elastic constants. We employ the

notation of Green and Zerna (1954).

We shall consider two types of boundary value problem. In

problem Ua we assume that the surfaces of the strip are constrained

in such a way that the normal component of the surface displacement

and the shearing stress both vanish. This problem has been

considered by Westergard (193) and Green and England (1963) - in

the form of a discussion of the state of stress in an infinite thin

plate containing an infinite row of identical Griffith cracks evenly

spaced; the solution given here is that derived recently by Sneddon

and Srivastav (1963) which gives the results in a form suitable for

numerical calculation and has the added advantage that it can be

generalized to provide the solution of the analogous problem in

three dimensions (Of. 13.2 below). In problem (b) we assume that
the surfaces of the strip are free from stress. This problem does

not seem to have beqn discussed previously; again we follow the

method recently devised by Sneddor and Brivastav (1963) which is a
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I generalization to the elastostatis case of a method used by Bneddon (1962)

in the solution of a simple problem in electrostatics.

2.1. Solution of Problem (&,).

In the disoussion of the first of these two problems we take our
unit of length to be such that the width of the strip is 2 v (i.e., in

I the notation of Fig. I we take c = v ). The problem of determining

the stress in the neighbourhood of the crack is then obviously
equivalent to that of determining the stress in the semi-infinite
strip -v <, y .< ir x; 0 when the boundary x 0 is subjected to the

I conditions

Sazy 0,0• y 4ý I, (2.1)

ci -2 . f(y), -a y < a, (2.2)

u =0, a < I yI -< V (2.3)

where p denotes Lam6's constant, and the function f(y) is prescribed.
If we assume that the edges of the strip are constrained in such a way

that the normal component of the displacement and the shearing stress
both vanish then we must ensure that when y = + IT ,

m = u = o, 0 < x < a. (2.4)

We further assume that as x -: , the components of stress and
I displacement all tend to zero. We shall satisfy this condition by

finding a solution which satisfies the conditions

a =u = or -V yw (2.5)

on the line x = 6 and then finding its limiting form as 8 -4 a
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i If we assume expressions of the form

U: =. 8/on( 8 .x)coh nn( 8 -ox)o

W n o
-(2 -2n + n8 coth n 8)sinh n( 8 - 41 cos(ny) (2.6)

I fl G7 a cosech(n 8 )n( 8 - x) si~n hn( 5 - x + (I - 2 77 - n 8coth n8) xI- n I

x cosh n( 6-4] sin(ny) (2.7)I
for the components of the displacement then (if we are considering plane
strain) the components of stress are given by the equations

1 -= _ - 0  n na n cosech(n80+ n 8cothns8x

2 2(1 - 27 ) 8 7-I

x cx•sh n(8 - x) -n( - x)sinhn(8 - X) I cos ny

77~j -U coseh(n a n osh ( 0 - nSoth nS) xi2• 2(14 - 2 17)8 n-, I

Sx sinhn( 8 - 41] sin(ny)

1.
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where 77 denotes Poisson's ratio.

This solution obviously satisfies the condition (2.1) on x = Of

I the conditions (2.4) on y = t v , and the conditions (2.5) on x = 8

Also on x = 0 we have the expressions

)r 
0

U 2(i a. + 7 cos, n

11
: 0a a -z n a n 1 +lc(n8) co0n8

n.j

where a u 0  2(1- )2 (2.8)

2(1 -i - 2 1 )8

and

k(•) = �+ 2e-F sinh •2
• sinh (

Hence we shall have solved the reJ evant boundary value problem if we can

find a sequence of constants Ia. j satisfying the dual series relations

ia a0  + na n +, k(n8 )] cos(ny) = f(y), O0 y< a, (2.10)

j ao + E an cos(ny) =, of a y 4,. (2.11)

naj

If we now consider the case of a long strip so that 6 >> w we

find that equations (2.6) and (2.7) reduce to

u=•2 ue(, " ) + • {an 2(1- ) +nz e-nXooe(ny), (2.12)
tI W=
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uW -Zan 1 2)7 nx eX sin(ny), (2.13)

and that the corresponding components of stress are given by the

3 equations

2 a 0 - n 0 + nx) e cos(ny), (2.14)

lui
-= - p a0 o n a.,. (i - n-') e" o~y, (.5

aa

-x n 2 a ae"n sin(ny), (2.16)

2 P

fl
j 2 #n-i

where the constant P is defined by the equation

(I - 2 n) 8

and the constants I a j satisfy the dual series relations

"[ j a 0 + L n an cos(ny) = f(y), 0 < y < a, (2.17)

Sa0  + a• ,os(ny) =0, a<c y .. (2.18)

In the case of an infinitely long strip we may take a = 0.

To solve the pair of dual series equations (2.17) and (2.18) we



9

make use of a method due to Srivastav (1963). We make the

assumption that when 0 4 y < a

I __

Sa° + an oos(ny) = cos(" y) :!(t)dt (2.19)
Snxi y V(coS y - cos t)

Iand reduce the problem to that of determining the function g(t). From

the theory of Fourier series it follows that

a= =4r g(t) dt, a f a gt)[(cost)+Pcos dt

S0 
0 n (2.20)

jwhere P denotes the Legendre polynomial of degree n.
Now if a = 0 in equation (2.17) we may integrate both sides of

the equation to obtain the relation

Sa nsin ny= F(y), 0 4 y < a (2.21)

fl-i

where the function F(y) is defined by the equation

F (y) = f(u) d u. (2.22)

If we substitute from equations (2.20) into the left hand side of

equation (2.21) and interchange the order of integration and summation

we find that equation (2.21) is equivalent to the integral equation

f S(y, t)g(t)dt = F(y), 0 4 y < a (2.23)

mhrete ene ~yt)indfie b her~to

I where the kernel S(y, t) o the relatin
eS
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I
It is easily shown that the funotion

S(y, t) = 4os(½ y)H(y - t) (2.25)
s4/(Ioo t - cos y)

I has as its Fourier half-range sine series in the range 0 i y < r the

expansion on the left hand side of equation (2.24). Substituting this

expression for the kernel into the integral equation (2.23) we find

that it reduces to the formI
o g(t) Cos(y)d t

S coY = F(y), 0 ý y c<a a (2.26)

008• t - eos y)
I

which can easily be shown to possess the solution

2 2dtft F(y)sin(' y) dy
g(t) =-- -P (2.27)

ir dt A ,(Cos y - Cost)

Swhere F(y) is given by equation (2.22),

From equation (2.12) we have that the surface displacement of

the crack u(.| (y) u.(0, y) is given by the equation

S(0) (y) = 2(0- n )[ia + a cos(ny), 0 < y < a0. Z .n

I so that it follows from equation (2Al9) that

P (y) = 2(1 - n) cos(j y) (c t) d t, (2.28)f y 4A'(os y - Cos t)

SIi

Ii
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I Similarly the normal component of stress across the line of the
crack oe ( y) = c (0, y) is given by the equation

IW
(0) (y) =-2# n an cos(ny) =-2,u aI + an sin(ny)

n= i

i and substituting from equation (2.19) we find that this is equivalent

to the equation

a (0' (y) 2 4~ [cM~ aL ' ff~t (2.29)
a = y 10' J /(cos y - Cos t)I

I The other physical quantity in which we are interested is the
strain energy of the crack in the case in which the normal stress
across the surface of the crack is constant . This is easily

shown to be given by the equation

IW = -2 fa a(°) (y)u(°) (y)dyI
If we substitute the expression (2.28) for u 0 (y) into this equationz

and interchange the order of the integrations we find that

1+ 1 P i t u)ot
~~a t•1-•)p cos(½ )1 = . .. ... tan(, t) d d t (2.30)E o0 0 /(OOS u - 0os t)I

S2.2. Crack opened out by constant internal pressure.

If the crack is opened out by a constant internal pressure p 0

then, in the notation of equation (2.2) we take f(y) = p/2 ,u It

!
r
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I follows from equation (2.27) that in this case we need to evaluate

dT/dt where

I rt xasin( x) d x
"= /(coS x - Cost)

or, what is the sawe thing,

dI= jsi(½ t) Al
I t 1 ---

where 
T =coaItand

T 4/(Z2 T2)

f Using the forimala. for integrating by parts we find that

I= 2 /2f og + + 4/(" = 2codz . log1T41(1 - -

from which it follows that

dI a2 'W2tsecG t)

and h en m that g=t * 2 t .

Prom equation (2.27) we can therefore deduce that

g(t) = tan(½ t). (2.31)
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I The surfaoe displacement u) (y) of the craok is then given by

equation (2.28) in the form

&) =2 4/2(1 17 2 ( y)f a tan(j- t)d t
u (y) 2( - 0 00) 1 o

z Y A/(cosY-oost)

The integration is elementary and it is readily shown that

U () l [cos(IY) + 4/(:OS ½j Y _ Cs 2 -ga)j

iyl < a (2.32)

Similarly the normal component of stress across the line of the crack

j is given by equation (2.29) in the form

(a r fa i see(-t) tan(j t) dtj .o¢(y) = -2p•o _ [CS ,2 2

11a <~ jyj

= -,2p 1 sin"n(seoi t oos ) y

I
Sin(I... ) a < jyl 4 . (2,33)

4/(0o0 a - 0o0 y)

I In a similar way equation (2.30) yields the formula

4 4/2(1 7 f....a t t -os(y) dy

f o tn4/(cos y - oos t)

1*
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I for the elastio energy of the orack. NowI ~ oo(,• dyf= oo.(•,o y)d
(oos y - oos t) rt2 o ý(sir? ½ L - sin" y) 4/2

so that in our system of units40I - anp' 8(i, •)P
( -n 2 ) fp • 8( t) 1t 0 ) og(sec-!a).

l E o E

In conventional units, if 20 is the width of the strip

8(1 - 2)a 02 @ log ec . (2,3)

WE 2c

j If the surface tension of the material is T, the surface energy of the
crack is U = 4a T and Griffith's criterion

A ( - u) = o
aa

for the critical value por of p when the crack length is 2a leads
to the equation

____ a cot-a
cr-7 (i 7) 2o

In the infinite case (i.e. o = m ) the corresponding value is known to be

50 that We may write the last result in the fprm

1 cr = p ws (2.35)
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i ~where
W(z) = ½Iz cot(½Ez) (2.36)

I
If we denote by 11 the percentage change in the value of the

I critical pressure pcr from the value -(0) corresponding to the

infinite case (c >> a) so that

H (a/c) = or x 100
P or

I then

""I (8/o) 1 -1° [a cloj (2.37)

The variation of the functions w and 11 with a/c is shown in

j Table I and that of 1 is shown graphically in Fig. 2.

We now return to the consideration of the shape of the crack and

the value of the normal component of stress across the line of the

crack. Putting y equal to zero in equation (2.32) we find that

u(O? (0) = C , the depth of the crack is given by the equation

S= C (-) d(s/c) (2,38)

where c(*) denotes the depth of the crack in the case c >> a and is
given by the equation

((00 = 0(2.39)

(in conventional units) and the function 4(z) is defined by the relation

S.(z) logtan o(z + -)]. (2.1.0)
i "
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Table 1: Variation of the functions w and n with 8/c.I

I /0 n

1 0.1 0.9958 0.42

0.2 0.9833 1.67

0.3 0.9617 3.83

0.4 0.9300 7.00

0.5 0.8862 11.37
0.6 0.8274 17.26

1 0.7 0.7489 25.11
0.8 0.6389 36.11

0.9 0.4732 52.68

0.92 0.4272 57.28
0.94 0.3735 62.65

0.96 0.3080 69.20

0.98 0.2256 77.41.
1 0.99 O.1562 8i.38

II
I
I
I

I

I
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Fig. 2 The variation with a/c of ff, the percentage increase in the

3 critical pressure over its value in the case c =, for constant internal

pressure.I
I
I
!
iF
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Values of i(z) for a range of values of z between 0 and I are listed

in Table 2, and the variation with a/c of C , the depth of the crack,

for a fixed internal pressure p0  is shown in Fig. 3.
Written in terms of conventional units equation (2.32) takes the

form

IULCo () CI- .2{log [cos( + V(COS2~ Z cc2 Iaz V a 2c 2c r

SloaCos( )}. (2.41)

The variation of the ratio J01 (y/f(CO with y for four values of the

ratio a/c is shown in Fig. 4; the curve corresponding to the value

•/c = 0 is an ellipse u(°• (Y) = 2/) 1- •a')•

and it can be seen from the curves of Fig. 4 that even a substantial

increase in the ratio a/c does not appreciably affect the shape of

the curve although, (as we should expect on physical grounds) the

'minor axis' increases by nearly 80% as a/c increases from 0 to 0.9.
Similarly, it follows from equation (2.33) that (in conventional

units) the normal component of stress across the line of the crack is

given by the equation

= 0 [Sin( Ir)(a os(2Zj

a < jy < cc. (2.42)

The form of the variation of a (O)(y) with y in three cases is shown

in Fig. 5, (the same value of P0 being chosen in each case). As we

should expect, we find that the shaR2 of the curve is much the same

whatever the value of the ratio ,/c but the intensity is greater the
higber the value of &/o.
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2.0

1.5

a/c
ID 0 1.0

Figure 3

Fig. 3 The variation with a/c of the depth, t, of the crack in the

case of constant internal pressure po0; e(). 2 (1-71 2 )p 0a/E is the.depth

in the case a/c - 0.
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11.6

0/c 0.658.

I ~Figure 14

Fig. 4~ The shape of the crack in the case of constant internal ~rssure

P0 for four values of a/c. The unit on the vertical scale is 9 defined

as in Fig. 3.
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(0 ) pIx

IIC .

a/ 0

a/ II

Fi g u r e 5 f s r s

Fig. 5 The va rYiatio n -with Y Of xc ase ( o f consthanrr8 o pnnt in er a Pr ssure P

across th line Of the crack in the cs fcf~~itra 
r5~ 0
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The stress intenSity factor N is defined by the equation

SN = lir 4/ ao (a + r)
r o, 0 +

p 0
0

2 0 )S= Pc t 2c/

fIf 0 >>a N takes the value

II
so that we may write the percentage increase of N over N as

i ~N - NQ'
S•• = n(a/c)

N

where

n(z) is tabl-at' ed- i t 1oa.

The ftuntion n(z) is tabulated in the second column of Table 2:
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Table 2: VarIation of the funotion d(z) with z.

z d(z) n(Z)

O 1.0000 0.0

0.1 1.0041 1.0
0.2 i.0166 1.6
0.3 1.0393 4.0
0.4 1.0730 7.5
0.5 1.1223 12.9

0.6 1.1928 20.9
0.7 1.2975 33.7
0.8 1 .4665 56.6
0.9 1.7982 112

j 0,92 1.9139 134

0.94 2.0685 16o

I
I
I

i:
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2.3, Solution of Problem (b).

I In the seoond problem the boundary conditions (2.1) - (2.3)
remain but the conditions (2.4) are replaced by the conditions

If we 01 O, =., 0 tr x o sn (2.43)

I If we denote by sand cthe Fourier sine and cosine

S~transform operatorsI
8 {x ys,1 = l (

I X-* F.] 7,/' ~t(x,y)cos(Fx)dx

then we can write the boundary conditions (2.43) in the equivalent

forms

a.;aX x C %7c[R[%, ;x 4& (2.44~)

We re&lce the solution of this problem to that of a Predholm integral

equation of the second kind by a method similar to that employed recently

by Sneddon (1962) in the solution of a boundary value problem of mixed

type in electrostatics. We assume a stress field of the form

u +-[if (F.) + 2(1 -7 )g(o oosh(Fy) + F. yg(F) x

x sinh( F.y)]& sin( 9x) dF +± + iW ~ # x

x 2i + Cxa- osC d (2.-.5)xU(

I-
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I
I u2 7-• • f![U(<)- (in- 2,h(ýy) + •yg(•.)

I xcosh(oy• cos(o x)dF X

I
XfE, - 2 ri x~- ý sin( C y) d C, (2.4,6)

I where E. as above, denotes Young's modulus, n denotes Poisson's ratio

and f, g, and p are functions to be determined from the boundary

conditions. If we substitute these expressions into the stress-strain

relations we find that the corresponding stress components are

azz =I -T12f {f + 2g)cosh( y)+ F.ygsinh(F y)] cos(Fx)d.

SJ (3)(0 + CX)e (2.47)

a'u /~ f0 {f cosh(.y) + . ygsinh(Fy)] cos(. x)d

7 o[

-T f 0x C oo(C y)dC, (2.4-8)

This solution therefore has the following proerties:-

I
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Ox 0: u= 2("121(C)cos( C y)d C

I

I
W =0;

On [a ;X..j f cosh( gc) -. og sinh(9 c)-

_W C46(C)cos(Cc)dC
7r(fo 2 + 2)2

Ys [ax F. [(f+ g) sin h( F.c) + F.cgcosh( c1Z +

I.+ •: (2 + C 2)2

It follows from these equations that the boundary condition (2.1)

j is automatically satisfied and that the remaining conditions (2.2) and

(2.3) on x = 0 are satisfied if we choose f, g, S such that

4T f!*[(f + 2g)cosh(gy) + .ygsinh(Yy)3 d. -

v. - d o 1"O()sin(Cy)d• =- p(y), 0 < y < a, (2.50)

Go Q)cos( Cy) d. 0., a < y 4 c (2-51)
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where we have written p(y) for 2Mf(y). Similarly the conditions

I (2. 44) on y = :t c will be satisfied if

+f cosh(oF.) + F.o g sinh ( o) = -2i (.) (2.52)

(f g) sinh(. c) + . c g oosh (•c) = 2j 2 (.) (2.53)

where the functions i (C), i2 (ý) are defined by the integrals

I .) J0 )(== . 2F) = sn(j~d (2.54..)
i2 + 2 2 )2 1 (C2 + C 2)2

If we make the representation

€(C) = C t * (t)Jo (Ct) dt (2-55)

of the function q5(C) then it is easily seen that the equation (2.51)
is satisfied whatever the form of the function r (t) but that

equation (2.50) is satisfied only if

d~u. (t) d ih~)
dY (y- + t 5

V 'J2L P(Y), 1o0,y <a.

If TM integrate both sides of this equation with respect to y from 0

to y( < a), we see that it is equivalent to the equation

J t , ) -f. [F."(f +g)sinh(Fy)+y g cosh( Cy)] d -

.0(y) ty)a

"~ I
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where

[ P(y) I= j p(t)dt, O0 y< a. (2.56)

I Regarding this as an integral equation of Abel type for 0 (t) in

terms of known functions f, g, P we see that

t2 (t) d loCt y sinh(9 y)dy+

2 r dr t y 2 cosh( F.y) dy 2 d .y P(y) dy

t• (t =- "(f +g~cl ¥(t -y

1 J dtJfo //(t 2 - y 2 ) IT d /(t 2
- Y2)

Using the results

2 dft yS3nh( y)dy

I irdtlo ,/(t
2 - y 0

2 f od 02,osh(F._y) dy.St (t -y) = t; I(t) + F.t; T( Ot ,

2 d yPy) dy t I p(y)dy

v t 4/(t 2 - y 2) /(t - y2)

we find that the relation between 46• f, g and p can be written in

the form

O(t) =f00 (f + 2g)1 0(t) + g9t I1 (Ft) d9 +

+i 2 t p(y) dy (2.57)
/fYT 0, 4 ,/(t' -y.

I. On the other hand if we make the substitution (2.45) into the

I
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I expressions (2.55) for the integrals i 1 ( ), i2(• ) we find that

these integrals oan be written in the form

/a a ai

U i 1(() o ) J dum, 12 (•) -f u0(u) ' du

I where a rOCOS( c)JO( C U) dC
j(i ,u, c) S- 7ra F.1,; Co•+•2 "

The integral occurring on the right hand side can be evaluated by

formula (14) on p.45 of vol.1 of Erdelyi (1954) to give

x[( - C. ( +.u) . u I( .U)}

so that

F. .,e - u 0C(u) (0 - 0) (F.u) +. u I(F u) du(2.S)

[a
L 2 2 u O(U) (2 oc.)IO(CU) + F.u I(F.u) du (2.57)

I Now if we solve equations (2.52) and (2.53) we find that

t'(F) = - o [•-( o _oh .c sn(F ~

x 1(.) + .o sinh( o) 1i(4) (2.S)

I~
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I

f If we substitute from equations (2.66,), (2.57) into equations
42.£), (2.59) and insert the resulting values of f(.), g(g) into
equation (2.50) we find that the integral equation for the

determination of the function (t) is

I(t) - j O(u) K(t, u) du= q(t), 0 4 t < a (2.60)

I
where the kernel K(t, u) is defined by the equation

I ~, U) = d F- (2c2 C - 6c F.+5 + 3e 2 oF.)xi 2go + sinh(2F a)

x I o(.u) Io(t) +(3 - 2 c +e 2 C)Itul0(Ft)I(Fu) +

+ Ft Io(.u) I(Ft)j + 2F 2 utI (.u) I (t)3 (2.61)

j and the free term is defined by the equation

I qt) f"~ i: /(t2y 2) (2.62)9 4( t 2 _ y 2)

In the case in which the internal pressure p(y) is a constant

p v sayn wehave•q(t) i( the o)lpu0t, so that ifrwe write

S(t) = (a) AP0  (oolW ) (2.63)

we find thiat 0 1 (t) is the solution of the Fredholm equation
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I t)-J (v) L(t. v) dv =It 0 t 4 a (2.64)

I where a= a/c and

I L(t, v) = a K(ct, cv)

I = f/V2 0 Cd C (2C2 - 6C +5+ 3e 2C)I0(C•I 0(Ct)

+ (3 - 2C + a 2C) [CV 10 (ct) II (CV) + Ct lb(CV) I,(Ct)]

I
+2 C2• rye (Cv)Ii ( t)]. (2.6-S)

An approximate solution of the integral equation (2.66) is

01(t) = '1 + Jo L(t. v) dv. (2.66)

Using the results

aI I(Ca a)a2

]v I CvI() C v 2 1 (CV)d,= C (2.67)

we find

I L(t v) dv = a •+ C - 6 + 5 + 3 e2C

x I(ca) Io(Ct) + (3 - 2C + e- )x

x[C aI,(Ct) I,(Ca) +Ct Io(Ca)I,(Ct)] + 2CtaI2(Ca)I,(Ctý.

! (2.GS)

I,



32

3. Distribution of Stress in a Cylinder containing a Penny-Shaped Crack.

We shall now consider the distribution of stress in an infinitely

I log circular cylinder which has a penny-shaped crack in its interior

with the centre of the crack lying on the axis of the cylinder and its

plane perpendicular to that axis.

(Of. Pig. 6). We shall suppose that

the deformation in the cylinder is

I produced by the application of the

pressure to the surfaces of the crack.

I As in the two-dimensional case we shall

consider two types of boundary conditions

on the curved surface of the cylinder.

In the first problem - denoted by l

problem (a) here - we suppose that the

I shearing stress on this surface and the

radial component of the surface dis-

I placement both vanish; this problem

has recently been discussed by Sneddon 6
and Tait (1963) and we shall follow that

solution here. In the second problem -

called problem (k) below - we assume that

the curved surface of the cylinder is free from stress; this problem has

been considered recently by Collins (i 962) and by Sneddon and Welch (1963).

We shall outline the method of the latter paper here.

3.1. Solution of Problem (a).

If we take the radius of the crack to be our unit of length, and the

radius of the cylinder to be c ( > i), then the problem of determining the

distribution of stress in the neighbourhood of the crack is equivalent to

that of finding the distribution of stress in the semi-infinite cylinder

p 4 cp z * 0 when its plane boundary z = 0 is subjected to the conditions

I z. = O, 0 P 4 0"c (3.1)

az = - 2pf(p), O0 p <:i (3.2)

u = =0, <p P o (3.3)
I
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where j is Lame's constant (rigidity modulus) and the function f(P) is

prescribed. If we assume that the cylindrical surface is kept fixed then
a p =ocwe must have

up= apz = O, 0 < z < (3.4)

It is well-known C[f. Sneddon 0.951), P5053 that a solution of

the equations of elastic equilibrium in the axially symmetric equation is

given by the equations

U =-L * u . [-. ( V2 x (3 .

2p apaz 2 a z2

where X ( p, z) is an axisymmetric biharmonic function and n is Poisson's

ratio. The components of the stress tensor can be determined from the

stress-strain relations; we have

17 V 2X 2 _pz 1 ., - V7

rpp = az a p ap az2

a =-- [V2 X" P , ] = " -L[2- V X - 2 •a z p {p zz azf x 1Z
A suitable type of biharmonic function for a problem of this type is

defined by the equation-21fo 02sn(z F
x = -2, •-' [A•) + 4-• -,7)(• Xo( p) -•.p()I (F-p sn•.

-2Id fo C3° F(C) (2 77 + F.z)e"• J, (F. P)cld (3.6)

where A, B and F are functions of F alone. A solution of this form

automatically satisfies equation (I .i). The corresponding expressions for

a zz and uz on the plane z = 0 are given respectively by the equations

af,{[A(.) - 2nB(QI,(Fp) -FpB()I,(Fp

2,u PF.)j(Fp~F..,(3.7)

Z =2(1 ?1:)- PF(F)J 0(F.p )d4. (3-8)



I
I

Prom these last two equations it follows immediately that the

U boundary conditions (1 .2) and (1 .3) are satisfied if A(.), B(C), F(F) satisfy

the dal integral equations

If?(QJ0(F.P)d +f4FŽ.(CA) - 2n7B(F. 10 (Fp) - F.PB(F.)I e)F.=f (P),0-

f 00 g'F(Fý)J 0(Fp)dF. v 0,P < p c.

It as known [Of. 
that the second of these equations is

automatically satisfied if F(.) is written in terms of an unknown function
g(t) through the equations

1 ( =) : g(t)sin(Ft)dt, g(O) =0 (3.9)

fand that if we substitute this form into the first equation of the pair

it reduces it to the relation

I g' l(tP d f(P) -f[ ( -2B()I(p) - FpB(C)I I(F.:P a
1f o _1 /P t2) 0

which can be thought of as an Abel type integral equation with solution

g(t) = h(t) - -2q (A - 2I(p)dp po I 0-FI(ýp)dp
7 ' (2_P) f 0/ ( t 2_p2

where h(t) is defined in terms of f(p) by the equation
h!) 2 ft p f(p) d p (-0

ht=Y(t- p_ 4

Making use of the results

4/Ct2 - p') _ f 2) : . .... ...... ..

we find that the relation connecting S(t) with A(fa) ard B(g) my b written

in the form

g(t) =h(t) - If[A( j + (1 -2-n )B(91~h(t I t()cs(~)d(.
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we find that the normal component of the surface displaoement is given

by the equation J g(t) dt

I 0  (p) = 2(1 - 1 4Ct) d ) 0 < p 1C1 (3.12)Ufj V(t2 - p2) 0

I Another expression of physical interest is the energy W required to

open out the crack. This is given by the equation

W = 4.1j pf(p)u (p) dp.

I
If we substitute the expression (3.12) for u o (p) and interchange theI

order in which we perform the integrations we find that

IW = J+V ?(1 - 77)W (c-1) (3.13)

where the function w is defined by the equation

W (a ") = fh(t)g(t)dt. (3.1)+)

The expression (3.13) for the energy W is derived on the assumption

that the unit of length is the radius of the crack. If the length of

the crack were a this expression would be modified by multiplying the

I right haaid side by af , i.e. we should have

W =4. 2 U(i - 77) (0 (4/0)a'. (3.15)I
In particular, if a constant pressure p 0 is applied to the crack,

f(p) =, po/2 P and so we have th(t) = ~ .(3.1i6)

I ~If we write :

fwe t- g(t) O(t) (3.17)
2;j

we find that

8p'(2 - 72)

3 a w(a/o)(3. 18)
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where

•, (o't) = .v tO(t)dt. (3.19)

I The Griffith criterion that the crack may spread is

La (w - u) = 0 (3.20)
aa

I where U, the surface energy of the crack, is given in terms of the

surface tension T of the material by U = 2 Va T. This leads to the

3 expression
- 2

I or ,I(1iET 2)a 1 (a/c) (3.21)Pt= 2(1 - n )&

I . for the critical value of the applied pressure to cause the crack to

spread when its radius is a. In this equation the function 0 W(x) is

defined by the equationI
If 0 > > a, the critical pressure takes the value

1c ~ 2(1 - 2~a

j so that we may write equation (3.21) in the form

SPcr = P• fl{a/c)" (3.23)

Equation (3.11) gives one relation connecting the unknown functions
t gtM, A( . ), B( 4 ) and the known function h(t). The two remaining

relations are given by the conditions on the curved surface p = o. It

is easily shown that the values of aP and up on the surface p = c

corresponding to the form (3.6) for X ( p, z) are given by the equations

C 0 -2P zfC C((C)e- CZJ ( c)dC

!- 2yzJ~{Ek(F)+2(1 -r,)B(F.)1(go) -soB(F)I ({c•.) .
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I [uP3~ P = -fC"F(C) I - 27-Cz J1 Qc)e'Cz dC

+f1 {A(F.) + 4(1 - 17)B(F. II (Fo) - c() c o(zd. (3.25)

i lIf we take the Fourier sine transform of both sides of equation (3.24)

and make use of the fact, which follows from equations (3.4), that the

Fourier sine transform ofLŽ p = c is identically equal to zero we

obtain the equation

A(F)I 1 (Fc) - B(ý)[1c0Io(c•)- 2(1 -7 )I (c1( = i 2- i , (3.26)

where the functions i (c), i 2() are defined by the integrals

4i F (c) c) F~2 rF(C)J Qc)dC
i,(•) =- - -2 d~2 i(2) =)J (•c) 2 (3.27)

Similarly if we take the Fourier cosine transform of both sides of

equation (3.25) and make use of the fact that [upJP = a vanishes for

all values of z, we obtain the equation

A(F)I,(Fc) - B(4)I[c oI0 (c) - 4(1 - 7 )I,(c•)]= i 2 - i. (3.28)

Solving the equations (3.26) and (3.28) we find that

A()=i,{ {°({)-(2 - )+2 B(g) = • (3.29)

c (CF) 121 ,(c () I (aF) 21 (c 6)

Substituting from equation (3.9) into the first of equations (3.27)

we find that i({) is related to g(t) through the equation

4 ri i(Ct) od
i,(g) _--,10g(t)dt 10 sn t3 . (3.30)

The inner integral can be derived easily from entry (5) on p.10 of Vol.2

of Erdely± (1954) and we find that

i,(•) = k(oa )/ g(u)sinh(Cu)du (3.31)
,fo
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Similarly, it is easily shown that

1 2(~ m ! fo ~)li (F )1 _KOC0+1( u cosh(Eu)K i(o ij]du.I (3.32)

If we substitute from equations (3.31), (3.32) into equations (3.29)

and thence into equation (3.11) we find that this last equation reduces to

the integral equation

I g(t) - f K(t, u)g(u)du = h(t) (3.33)

j in which the kernel K(t, u) is defined by the equation

=~t 4 2 'aF),ct sinh ( F_ t)sin h ( F.u)

+ E [u cosh( Fu)sinh ( ýt) + t cosh Ft sinh . dF.

I (C F ) 3

Now, using standard properties of Bessel functions (see Watson (1944)

pp.79-80), we have that

S--d KKIcc) F- oK(O)II(c Q, -I'(c1 F)K,(o F-)

i=½c[I (a ),, + 1 (0 01 K,(G•). )+ [K°(C0, + K (a 03 1 C .)

-c i2(c •)
12CF

I I

so that

sinFh(.t) sinh(Fu) dg d (a F

Integatin by spnth (wt) sin h( tu)a

Integrating by parts,, we can reue this last term to
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fI [Bc) inh ( gt)ainh( 9u) + 9t oosh(gt).sinh( Cu) +
I+ 9u cosh(ou) sin)h( t)I

We therefore find that the kernel K(t, u) of the integral

equation (3.33) is given by the equation

I4 jýK A-(o F.)

K(ts U)"-= - - sinh ( F. t)sinh (F. u) dg (3.34)
• J2 0 (cc:)

which may be written in the form

IK(t, u)= H( U + )- H u- t) (3.35)

where the function H( X) is defined by the equation

2 K
r H X)..~~[os(xv)-~ V (3.36)

3.2. Alternative Solution of Problem (a).

In view of the recent interest in the solution of dual series

relations it is interesting to see that problem (a) can be reduced to

that of solving a pair of such equations and that the use of a method

of solution due to Sneddon and Srivastav (i 963) leads to the same

integral equation.

If we insert the biharmonic function

X( P, z) - 2 X. na n(2?7 + X . J0 (% ' np) (3.37)
nxi

into the equations (3.5) we find that it corresponds to an axisymmetr-o

displacement vector with components

u = - na (I - 217 - X, z)e-Xn z (x p (3.38)Up . • , fi

nL
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u3 2Z n an(' - 17+ '& z)e Xnz JO()r P). (3-39)
nz~iI

The z-components of stress are then given by the equations

Ioa - 2p° an(I + X z)e" Xnz ( o), (3.4)
T n, n

o = - 2M z 3 a e n J(n n P). (3.41)I ap n n i

nU=

j It is an immediate consequence of equations (3.38) and (3.41) that the

boundary conditions (3.4) will be satisfied provided that X , 2

% I ... are chosen to be the positive zeros of the function J (%c).

Similarly it follows from equation (3.41) that this choice of biharmonic

function automatically satisfies the boundary condition (3.1). The

remaining boundary conditions (3.2) and (3.3) are satisfied provided that

we can find constants a to satisfy the dual series equations

n

S• a:o(•p) =f~p), 0 -<o (1,

.n an n
nl=

/ a Jo7. p) = O, 1 < p • a

where the X are the positive zeros of J (7 c). We can readily

transform these equations to the form considered by Sneddon and

Srivastav (1963). If we multiply both sides of these equations by p

and integrate the first with respect to p from 0 to p and the second

from p to c we see that they are equivalent to the pair of dual series

equatiods

L n a ,J (x °p) = F(p), 0o p < 1, (3.42)

flxi
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n a n J (xnP) 0O 1 < , (3.43)

where X, , ... , 2 are the positive zeros of J (Kc) and

F(p) = I.f uf(u) du. (3.44)

It has been shown by Sneddon and Srivastav (1963) that the

solution of these dual equations is

an = u a(u)J (uK n)du, (3.45)

IJ 2 ( x c) 0

where

()= Z •J1(X~p)_=---- ( 2 t , o0~ <I, (3.46)a!P anJ(X ) ap IP 4/(t2 _-P p) 0<P<(-6

and g(t) is the solution of the integral equation (3.3) where K(t, u) is

the function defined by equations (3.10), (3.11) and

2 d ft u 2 F(u) du 2
h(t) =-- t"- t - u f(u) du (3t4-)

IT dt 2(t _ U2) 2 T =(tl _ U2)

and so has the value given by equation (2.6). We therefore obtain the

same result as before.

3.3. Solution of Problem (a) in the case of constant internal pressure.

We now consider the case in which the crack is opened up by a

constant pressure p 0" The corresponding value of h(t) is given by

equation (3.16) so that if we make the substitution (3.17) for g(t)
we find that the relevant form of the integral equation (3.33) is

W(t) - ( (u) K(u, t) du= t. (3.48)
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I We begin by finding an iterative solution of this equation which
is useful in discussing problems in which c > > 1.

If we write

$(t)= h(t) (3.49)

I T r=o

then we have the iterative scheme

h 0 (t) = t, h r(t) I hr(u)K(u, t)du, (r = 0, 1, 2, ) (3.50)
I i.~~+1 ••

for the determination of the functions h r(t).

We now expand the kernel K(u, t) in powers of c". Using the

expansion

coSh& v- cosh ( V

2ut 2 (u't + Ut1) v, (3U 5 t+ 10uYt3  Ut'
_ V + + + va 3c4 180 c6

+ (u" t + 7 u5 t'- + 7 u 3 t 5 + ut 7  v 8 + O(c- 0 ),

2702 c 8

we see that we may express K(u, t) in the form

K(u, t) a 2r +1 (3.51)

r=o

where

2u uT uT u T

+,(u - T + + ..+

, (u)vc3 3c 60c' 25200c

2u u.T u4T

a(u) T +gj 6 120c4

I
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u2W

a ~ (u)= + aT
5 0,27 6 C +

u f
a 7(u) = 1 2T +c9 ,I 1260ir 2

and we have written

T = I x dx. (3.52)
I (x)

The values of the integrals Ti are listed inTranter (1959).

I From the form now taken by the function K(u, t) it follows easily

that the functions hr(t) may be written in the form
CO

hr(t) p(r) t2s+1  (3.53)

s=1

Suppose, for example, that c is sufficiently large to enable us to omit

powers of t higher than the seventh. The next iteration h (t) mayr+1
then be obtained from equation (3.53) where the new coefficients will be

determined from the equation

pý r+)1 [p(r)u + 3 (r)u ru ()7
3 + Pr3 u+ P 5)u + P,)ijj ai(u)du. (3.54)

In the case of h 0(t), the initial value, we take

P0 = , Pi 0 = O, i i. (3.55)

Then, to find the coefficients of successive iterations we need only

calculate the sixteen quantities

a asZ, r ' a r(u)du, (r, a =1,3,.5,7) (3.56)

The general term hr(t) will be given by (3.53) with p~r) satisfying the

recurrence relation

p(r) a (r i )+ a Pr- i) + a i(r-)+a p(r (3-57)

3s 1~i 3 3 5si 5 7,1i7
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If we take

T = 2.50330, T = 3.77139, T = 23.431, Ts = 302.2,9
2 4 6

we find that

a 2 T4 T 6 0.3382 0.0509 0.0113
62 38 +C

a =----2 ---+-•T •= •- * + + +

1 I c5 5c 140c 7560c c c c
I 0.0026

~42+ 9 + ] 2I c
2 2T T T T 0.2029 0.036a 0.0088

a = + 4 + " =+ - + +3jpi o2 4 + c5 07

0.0022
+ -C

9

2 2T T TT 0 .1449 0.0283 0.0072
a= - + -+ + - +- +

" i 2 o 3L 7 27c 2 660c 32706 c 3 c) 5 7

0.0019

c9

2 ~2T T 3T T 0.1127 0.0232 0.0061a = 2 3 - - + __ + + a

701 31ac 3 lic 260 c4 12600oc= o-3) a Ic a7+

+ -
9v, a=c tT I ic 280o4 20c6 c a

9S~C

Sa = ""3 =- + - +-+-+

2 (T T T 0-0510 0.0377 0.0190
a =- + - - ="- +- +--v
303 39 2 0 " 5 T2 10804 a 5 0 7
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2 [T T T -~0.0364 0.0293 0.0155

a -- + + = - + +
3' 0 3 2'- 7 5402 1320c' 0' 0' c

I

2 [T T T 0.0283 0.0240 0.013197, r a'Os 3 22 0c 52.0cL 4 c 97c

I

I T 0.0264 0.0340
a-T + =- +-

105 902 c7 6 102 a 9

I
T T 0.0158 0.0243

a - -L +-L- = + -
3 30f2c 7 5 4202 ac.-m

I
I fT T 0.0113 0.0189

a =- [-L + a + -I*5 30ir2 0' 0 7 540-)2 -. 7 c 9

I
i T T -0. 0088 0.0151+7I L a =- -- vh -

78 .• 901207 L.c 3 2202 c1 0 9

I
• T 0.0081

a = -mm -0 D 9,, 37801r.' 0,

Ii
[
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For instance, it is easily shown that up to terms of order c 7 ,

I p(O P a P a a ,P =a a +
1 1,1 3 1 S3 5 1i5 1 1 P1 1¶i

+ a a + a a 014
3Si 1 3 521 1 5 - 6

and the others may be neglected. Since

2(t) 2 5 p(r) t 2 s+1
9 Z 2s+1

r•s

it follows from equation (3.19) that

w(c") =32(r)

3 r 2s+1

and we can easily show that

1) = I 0.3382X+ 0.0815X. + 0.1144X'+ 0.0125x'?.+ O(x).

From the definition (3.22) we then have

SW( = 1 - 0.3382X'- OA1087X3 -OA856 x- 0.0219x? + o(xo)

I



I

showing that, in the notation of equation (3.23), the critical value of

j the pressure for a crack radius a( << o) is given by the equation

Per = or - 0.3382a'/c 3 - 0.1O07a5/c 3 - 0.1856a/6 -

- 0.0219a'/c0 + O(a8 /cS3)] (3.58)

If we define a ratio 11 by the equation
Loo5

SPcr, Poro - 100 (3.59)

I ~or
so that HI denotes the percentage change in the value of the critical

Spressure pcr from the value -(c) corresponding to a crack in an infiniteor Per

solid, then if c > > a,

II = 33.82a/c' + 10.87 'Ic 5 + 18.56a 6 /c' + 2.19 a/c 7 + 0(a 8 /c 8 ). (3.59a)

These formulae are of use only if the ratio a/c is small. When

it is only slightly less than unity the integral equation (3.48) has to

be solved numerically. At first sight the solution 0 (t) of this

equation would appear to depend only on t in the range 0 < t < I but it

will be recalled that the kernel K(u, t), defined by equations (3.35) and

(3.36), depends on the value of c, the radius of the cylinder expressed

in terms of the radius of the crack as the unit of length. The

computations were carried out for the values c = 1.05, 1.10, 1.20, 1.30,

1.6667. The values of the integral H(X) defined by equation (3.36)
were first calculated using Weddle's rule for numerical integration and

the integral equation itself was solved using the method of Fox and

Goodwin (195 ). The calculations were carried out on the DEUCE computer

in the Computing Laboratory of the University of Glasgow.

The results of the calculations of O(t) are shown in Table 3 and

graphically in Fig. 7. It will be observed that even for moderately

small values of o (for instance greater than 1 .20) the graph of the

function 0(t) differs very little from a straight line.

Using these values of * (t) and the formulae (3.18) and (3.19) we
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Table 3. The variation with c and t of q (t).

c 1 .05 1.10 1.20 1.30 1.6667

12t

1 .0893 .0785 .0690 .0639 .0575
2 .1791 .1574 .1382 .1285 .1151
3 .2702 .2370 .2077 .1926 .1727
4 .3632 .3177 .2777 .2579 .2304.
5 .4591 .3998 .3086 °3227 .2881
6 .5591 .4833 .4204 .3890 .3460
7 .6649 .5726 .4937 .4551 .4039
8 .7794 .6639 .5688 .5231 .4621
9 .9068 .7641 .6463 .5916 .5205

10 1.0556 .8719 .7272 .6620 .5791
11 1.2445 .9965 .8126 .7341 .6330
12 1.53041 1.1479 .9047 .8092 .6972

Table 4. The variation of W/W I and n with c/a.

c/a 1.05 1.10 1.20 1.30 1.6667 2.5 5.0

W/W. 1.9704 1.6649 1.3670 1.2725 1.0994 1.0205 1.0027
S 3. 26.9 16.3 12.5 6.9 2.1 0.3

n 140 80 42 27 9.5 2.3 0.3

[
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Figure 7

Fig. 7 The vaiiation with b and c of the function 4(t). (a is taken

to be unity).
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easily calculate the variation with a/c of the ratio W/W where W

denotes the value of W corresponding to c , i.e. to a value 0 of

the ratio a/c, so that 8 p 2(1 _ 7)a

W 
_

The results of these calculations are shown in Table 4 and graphically in

Fig, 8,

Toillustrate the variation of the critical pressure, pcrl necessary

to cause the spread of the crack Ahen its radius is a the ratio R

defined by equatiorns (3.59), (3.23), (3.22) and (3.19) was calculated.

The results are shown in Table 41 and graphically in Fig. 9. From this

diagram it follows that the drop in the value of the critical pressure(4*
P from the value p corresponding to . crack in an infinite solid isocr or

I less than % if c > 2a and is less than 10% if c > 1.4a.

If we look at the variation with a/c of the stress intensity factor

N we get much the same kind of picture. To illustrate the variation of N

we calculated n the percentage increase in the stress intensity factor

due to the effect of the finite radius of the cylinder. The results are

shown in the last row of Table 4 and graphically in Fig. 10. The

effect of the finite value of the radius is more pronounced in this case.

For instance if c < 1.2a, the change in the stress intensity factor is

greater than 40%. However it is less than 5% if c > 2a and is less than

10% if c > 1.7a.

It is of interest to compare these results with those obtained in

the analogous problem in plane strain. If we plot the ratio a1 as a

function of x, the ratio of the area of the crack to the cross-sectional

area of the cylinder (i.e. x = a2 /c1) we get the curve shown in Fig. 11.

The curve II shown in the same diagram shows the value of the percentage

change in P in the plane strain problem but here x is taken to be the

ratio of the length of the crack to the width of the strip. In Fig. 12

we show a comparison of n the percentage increase in the stress intensity

factor in the axisymmetric case with n the corresponding quantity in the

plane strain case, x being given the same interpretation as before. Using

this basis of comparison we see that as far as an "engineering" approx-

imation is concerned the size effect in the axisymmetrio case can be

gauged from that in the plane strain case.
I
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Fig. 9 The variation with c/a of 1iT3 the percentage change in the value

of the critical pressure p cr from the value p corresponding to a crack

in an infinite solid.
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Figure 10

Fig. 10 The variation with c/a of n the percentage increase in the

stress intensity factor due to the effect of finite radius of the

I cylinder.



I

30

20"

I0

x
0 02 0.4 0rS 0.8 1.0

Figure 11

Fig. 11 A comparison of the axisymmetric solution and the plane strain

solution. n is the percentage change in the value of the critical

pressure in the axisymmetric case with x equal to the ratio of the area

of the crack to the cross-section area of the cylinder; f is the analogous

quantity in the plane strain problem with x equal to the ratio of the

length of the crack to the width of the strip.
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Figure 12

Fig. 12 A comparison of the axisymmetric solution and the plane strain

solution. n 7 is the percentage increase in the stress intensity factor

inithe axisymmetric case, n that in the plane strain case. Lx is defined

as in Fig. 11).
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3.o/. Solution of Problem (b).

I In the second of the two problems we shall consider the conditions

on the crack surface are the same as in the first problem but the

I conditions on the curved surface of the cylinder are different. Instead

of assuming that the normal component of the displacement vanishes we

I assume that the normal component of the stress vanishes, i.e. the

boundary conditions (3.4) are replaced by the conditions

I a = 0, p = c, 0 <, z < 0 (3.60)

I
If we take the form (3.6) for the stress-function x ( P , z) we

find that on the surface p = c the stress component a assumes the form

SCa c z 2Iy:[A(F){[ lIo( -[ c(a(cOF] + B(F) E3- 2a)cI (c•) -

40 -( 7 )1(O. - 0c F. II (cc)] cos(g z)dg

2u - -Z (Cc) 277)(CC.).

11 0 CO) go d

If we take the Fourier cosine transform of both sides of this equation and

make use of the fact that Copp~ p = = 0 and hence that 31c[OC o PP c

z - F.I ff"e find that

( 0=c ,13+nii -i a(3.61)

where iI and 1 are defined by equations (3.28) and i is defined by the

equation

1,=.. 3 2 a • (3.62)

IiQ. +
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Substituting the expression (3.9) for i( ) into equation (3.62),I interchanging the order of the integrations and making use of well-known

integrals involving Bessel functions (Cf. pp.10, II of vol.ii of

SErdely (1951)), we find that

1 z i, g(u) sinh(Fu) [Ko( )- cFK(cF.) + Fuoosh(Fu) x

K (c Cj du. (3.63)

Solving the equations (3.61), (3.27) we find that the boundary

I conditions (3.60) are satisfied if we choose A( F.), B( F.) to be given by

the expressions

vA()g(cW ) g LH(.) - 2 + 2D] gf(u)Fu cosh(.u) du

02 
=2

I
+ L(3 - 27)H(c)F-. +4+ -) 77 g(u)sinh( u)du,

0 (3.64)

v- ()C Weg) f,(u) u cosh(Fu)du + aH(c F))f (u)sinh(•. u) d

(3.65)

where the function G is defined by the equation

G.(s) = sI02(s) - (2 - 2 + S2)12(8) (3.66)

and the function H by the equation

H(S) = S',o(s)Ko(s) + (2 - 21 + s 2 )jI (s)K (S). (3.67)

If we substitute from equations (3.64) and (3.65) into equation (3.11)

we find that this last equation red-ces to the integral equation

g(t) +- JL(t, u)g(u)d =h(t), 0 t t , (3.68)

for the determination of the functim g(t), the kernel L(t, u) being

defined by the equation



58

L(t., u) f21 - [H(o - [ cosh( . u)inh(. t) +.tcosh(t) x

s ih( Fo.U + [ 2H(c - 3 + 2 - .c sinh(.u)sinh(gt)

.- 2 utcosh(.u) cosh(.t)]dE. (3.69)

The equations (3.68) and (3.69) are identical with those derived by

Collins [of. equations (3-13) and (3.14) of Collins (1962)0.

For small values of the constant c"' it is possible to solve

the integral equation (3.68) by an iterative procedure. To derive this

solution we need first to derive an expansion of L(t, u) in powers of c-.

We find that

6 rt~ ~ ~ - n 1( . 0

L(t, u) c-2r- 3 z Dr- n, nt 2 n~" u2r- 2n+1 (3.70)

r=o noI
where

Dmn =Dnm= 2m +n + 2)Emnn- [2(m +)i (n +i) +.i -n7F -

- (m + i)(2m + 3)Fo+i n] (3.71)

with

3 = 2 00 o 2 +2n+2 H(s)d (372)Smn n,m =(2m + l)!.(2n + I)!'I G(s) (

and 2 a 2m+2n+2 ds

F mn = Fnm ='(2m + 1)1.(2n + 1).10 G.(s)

For a prescribed value of the Poisson ratio 7 the coefficients E and
i~nn

F have to be evaluated numeriaally for various values of m and n depending

on the order of the terms retained in the expansion on the riGiht-hand side

of the equation (3.70).

I
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3.5. Solution of Problem (b) in the Oase of Oonstant Internal Pressure.

j We now consider in more detail the case in which the internal

pressure in the crack is p o that f(p) po/2. and h(t) p 0(iu .)
I and the integral equation (3.68) becomes

2
I g(t) -- . L(t, u)g(u)du= •t 0 < t •.(3-74)

Collins has obtained the approximate solution

gW !r 0 30c' 3wc' 5 ) 26

+ U - & + I a +
V ( 3 5 79 ) c

2 (D t 6  D t' D t2  D 4D 3
30 21 21. + 0+

3Tc 5 7 9 27 IT

4,- D D t' t
+ 20,--- + (DooD +2 D) -2 +2j 9 015

o0 +1 O22 - .U (3 .75)525 25

by the method of iteration.

Now by equations (3.13), (3.14) we find that the energy of the crack

is given by the equation

W2 = •Po0 (1 - 77 ) Jtg(t)dt (3.76)

so that in our units (in which the radius of the crack is taken to be the

unit of length)0 ....... -- a -- - 20
3P. 3g-0' 5w c' 9'206 r c' 7 251

16 DOOD1 0  _ 4 (30+ 3 2 +2 0 + 8 (2 DD + D +
159r2c rTo D 35 271r2/+72 2 , 21 5

525
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In conventional units this becomes

8(1ý 4. a))p 2 a" 7~ 2D 3
w = - 1 -) 1 -0 -- --..Lo+_U

Irc a 5ir 9V n c ~ ~7
4 7 25

16D D a a 4a 9  3 3D 2 D 3 +8 a" (2D2D D D 443)j + 00 10 ..... 0...2 21 00) 000 00 1 0
+ -+ + + + l +

15Vr2 c a8 ITC 9L9 35 27 2 2 j0 1 25 525

"+ o(a'Yc"1J) (3.77)

Applying the Griffith criterion (3.20) we find that the critical value of

Po is given by the formula
( 2 Doeas 16 D 1a 2a? (0D D D D a'

5 )-r + 3 - -- +
3 c 15905 c'c 21 45 V

8a 9 ( D 3 D2 8a. 0  (2 2DD D D 2D2

+ +0 - z- + 1 + I/cI

7c0ý 9 35 / 3ir2 C' 0  21 25 21

(3.78)

where, as before, f(w01.U/2( - 7•)a"i-
Pcr =-

In the case 17 = 0.3 we find that this formula takes the form

P r= p('- I- 0.2626 a 3/c - 0.0340 aS/c' - 0.4570 a 7/c 7 + 0.0176a8 /c'

+ *9/') 1(3.79)

If we define a percentage change fi in the value of the critical pressure

from the value p()in the infinite case by equation (3.59) then wePor crfind that

a 2 = 26.26 a3/c3 + 3.40 a/o's + 45.70 a 7/c 7 + 0(aa/o)a (3.80)

Formulae (3.79) and (3.80) should be compared with their counterparts

(3.58) and (3.59) derived for the boundary conditions of Problem (a)..

When a/c is not very small we again have recourse to numerical

integration of the integral equation. To facilitate the numerical

calculations we transform the integral equation (3.68) by making the
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i substitutions

2og(t) = Po $(to), K(t, U) 2cL(o t. u), a a" (3.81)

7ITM I

I when it reduces in the case h(t) = po/( t " ) to the form

I a(t) + K(t, u),(u)du = t, 0 < a < 1 (3.82)

where the kernel is now given by the equation

K(u, t) == Lfo2H(x) - 3 + 2 1 - x2] sinh(u x)sinh(t x) -
2]

- ut x2 cosh(u x)cosh(t x) + xLi(x) - 1Ju cosh(u x)sinh(t x) +

+ t sin h(u x) cosh( t x)] ]dx (3.83)

with H(x) and G(x) defined by equations (3.66) and (3.67).
From equations (3.13) and (3.14) we find that the energy W

required to open the crack is given (in conventional units) by the

equation

8 0•( t 0 ct(t) dt(3.810

where a is the radius of the crack, so that the Griffith criterion (3.20)

that the crack may spread leads to the formula

_ cr n (ol c), (3.85)

wh2(a) = [ a/r (aW] 
(3.86)

for the critical value of the applied pressure, pg) being defined as before.

The percentage change 1U in the value of porP is therefte given

by the foulao - ( (3.7)
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In a similar way equation (3.12) leads to the expression

U0 (P) n )pI a (x), 0 1 x c a (3.88)

a 3E

with
II a (t)dt

a 8/c, x = p/c, F a x) = - ( ) (3.89)
a 1 / 4/t 2 - X2)

for the normal displacement of the surface of the crack. If we write

b (1 2 )pOa (3.90)
VE

I which is the value of u at the origin of coordinates in the caseI

>> a we see that we can write equation (3.88) in the form

u 0  (p) = b Fa(x) (3.91)

The percentage increase n 2 in the stress intensity factor can be

calculated by means of equation (3.60). We find that

n a X100, a = a/c* (3.92)

The various functions were computed for the value 7 = 0.25.
The variation of 0 (t) with t for six values of a is shown

in Table 5 and graphically in Fig. 13, while that of Fa (x) for 0 < x < I

and the same values of a is shown in Table 6 and Fig. 14. The
variation of the function , (a/c) i.e. of the ratio pis given

by the second row of Table 7. Pig. 15 shows the variation of the

critical pressure Pcr with the ratio a/c. The values of the other
quantities of physical interest 11 and n2 are also listed in Table 7.

To illustrate the differing effects of the two kinds of boundary
conditions on the cylindrical surface - those considered here and those

I considered in problem (a) - the variation of ni and nl is shown inI a
Pig. 16 and that of n and n is shown in Fig. 17,I a

Using either of these quantities as a measure of the effect of the

finite radius of the aylindr we see that if a > j c the effeot is more
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Table 5: Values of the function c (r a/12) (7 0.25).

0.2 0.3 0.5 0.7 0.8 0.9I r_

I 0.072 0.093 0.128

2 0.033 0.051 0.089 0.144 0oi86 0,256I!
1 3 0.216 0.280 0.385

4 0.067 0.101 0.179 0.288 0.375 0.519I
5 0.360 0.468 0.651

6 0.1OO 0.152 0.267 0.434 0.566 I 0.795

7 0.504 0.660 0.932

8 0.134 0.203 0.358 0.576 0.758 1.031

9 0.6147 0.853 1.203

10 0.167 0.253 0.443 0.721 0.957 1.356

I 11 0.793 1.054 1.577

12 0.201 0.304 0.536 0.881 1.183 1.802

_ _ _ _ _I _

1.I
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Pig. 13 ?e vaiati 'fwth t and aOf the function O(t) for constant

IPressure 
Po and 7) 0. 25.
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Table 6: Values of the funotiioFa(r a/12). ( 0. 25).

a 0,2 0.3 0.5 0.7 0.8 0.9

0 1 .001+ 1.04 1.070 1.238 1.418 1.709

1 1.234 1.414 1.784

2 0.990 1.000 1.055 1.221 1.4.00 1.768

3 1 .199 1 .376 1 .7)+2

4 0.947 0.956 i.008 1.168 :042 1.702

5 1.127 1 .297 1 .694

6 0.869 0.878 0.926 1.074 1.239 1.587

7 1.009 1.166 1.504.

8 0.748 0.755 0.795 0.926 1.073 1.394

9 0.822 0.955 1.254-

I0 0.554 0.560 0.589 0.688 0.802 1.064

11 0.496 0.579 0.774

12 0.000 0.000 0,000 0.000 0.000 01000
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Figure l4

Fig. lh The variation with x and a of the function F (x) for constant

PO and n 0.25.

I

I
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Table 7: The variation of Q 2 and n /with c. (1 = 0.25).I __ _ _ _ __ _ _ _ _

0a/ 0.2 0.3 0.5 0.7 0.8 0.9

1 2 0.998 0.993 0.965 0.891 0.822 0.707

II 0.2 0.7 3.5 10.9 17.8 29.3

n 2 0.5 1.3 7.2 25.9 47.9 100.2

I

I!

I.
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Figure 15

Fig. 15 The variation with Pcr• (ý) with a/c in the case T = 0.25 and

for constant pressure on the crack surface.

I

I

I
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Figure 16

Fig. 16 The variation with a/c of the percentage increase in the critical

pressure for constant pressure on the crack surfaces. The curve -2l corresponds

to the case in which u,,= 0 on the cylindrical surface and is independent of
T; the curve T2 corresponds to the case in which a pp 0 on the cylindrical

surface and n= 0.25.

I
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Figure 17

Fig. 17 The variation with a/c of the percentage incre ase in the

stress intensity factor for constant pressure on the cram.ck surfaces.

The curve n! corresponds to the case in which up = 0 on the cylindrical sur-

face and is independent of n.; the curve n2 correspondst-0 the case in

which " = 0 on the cylindrical surface and n - 0.25.
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pronouned in the case in which the radial component of the surface
i displacement of the cylinder is zero.

3.6. Solutio, of Problem (b) in the Case of a Variable Internal Pressure.

To illustrate the effect of the application of a variable pressure to

the surfaces of the crack the numerical calculations were repeated for the

case in which f(P) ) , 0 .< 1. (3.93)

In this case the free term of the integral equation (3.68) assumes the

form

po ft 2t1
h(t) = - --- " (3.9J+)

VA c C 3

If we insert this value for h(t) into equation (3.68) and make the

transformations (3.81) we find that the function 0 (t) is a solution of

the integral equation pa
(t) + K(t, u) 0(u)du = t - t t3 (3.95)

where the kernel K(t, u) is given by the equation (3.83).

Numerical solutions of this equation were obtained for the four

values 0.2, 0.5, 0.7 and 0.9 of a = a/c and for 7 = 0.25. The results

are given in Table 8 and are illustrated graphically in Fig. 18. The

function F a (x) defined by equation (3.89) was also calculated for these

four values of a . The results are shown in Table 9 and graphically in

Fig. 19. Here the upper curves show the distribution of pressure on the

crack surface and the lower curves give the resulting shape of the crack;

the length b. the depth of the crack in the case a << c, is defined by

equation (3.90).
The quantities Q and n. which are defined by equations (3.86)

I and (3.92) and from which can be derived the critical pressure and the

percentage inCrease in the stress intensity factor, were calculated for

these four values of the ratio 9/o. The results are shown in Table 10.
In comparing these results with those corresponding to constant internal

I|



Table 8: Values of (rc c/12), the solution of the integral equtio72

(3.95) for four values of at

0.2 0.5 0.7 0.9

1 0.069 0.110

I 2 0.033 0.088 0.137 0.219

3 0.204 0.325

4 0,067 0.175 0.269 0.430

5 0.330 0.525

6 0.100 0.255 0.389 0.621

7 0.440 0.700

SO.132 0.331 0.491 0.791

19 0.527 0.840

I 10 0.164 0.392 0.570 0.930

1 11 0.588 0.949

12 0.195 0.500 0.617 1.002

I
I
I
I
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Fig. 18 The variation with t and a of the function 11(t) for a

pressure p 0 (1- p 2/C 2) on the crack surfaces and rj 0.25.
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I Table 9: Values of the function Fa (ra/12) defined by equations

(3,09) and (3.95) for four values of a

r 0.2 0.5 0.7 0.9

0 0.995 i.008 1.082 1.347

11 1.077 1.341

2 0.981 0.991 i.06i 1.321

3 1.035 1.289

I 0.936 0.938 o 0998 1.243

j5 0-,951 1.185

1 6 0.858 0.848 0,892 1.112

7 0.821 1.026

8 0.736 0.712 0.737 0.923

9 0.638 0.801

1 0 0.543 0.512 0.518 0.653

111 10.361 0.+53

12 0.000 0.000 0.000 0.000

I
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Fig. 19 The shape of the crack for four Values of a/c when the pressure

is P0 (1-p 2/c) anid n =O.25. The upper curves show the distribution of.

pressure on the crack surface and the lower curves the corresponding shape

of the crack. 4~ 1(1-712 0p/w



I
76

I
Table 10: The variation of the functions Q2 1 2 and n with 9/

w when th7e internal pressure is p 0 (1 - p /c 370 ( 77 0.25).

a/0 0.2 0.5 0.7 0.9

Q 2 1.(11 1.055 1.065 0.948

n I 1.5 20 31 142
I

I
I

i

I

I
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I pressure (Table 7 above) it should be noted that in the second case the

average pressure on the crack is

-2po (: -a 22 )dp = p0  - ½(8/c)

I
so that if a is nearly equal to C the average pressure is appreciably

I less than p.
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